Wednesday, October 10, 2018
Linux down the Memory Lane
Monday, October 8, 2018
Deep Learning and Genomics
Sunday, April 24, 2011
Not so foolish anymore..
“In 1874 the QWERTY keyboard was invented. In 1963, the world was introduced to the mouse. Some 50 years later, we’ve seen the advent of microprocessors, high resolution webcams, and spatial tracking technology. But all the while we’ve continued to use outdated technology to interact with devices. Why?
This is a question that we’ve been thinking about a lot at Google, and we’re excited to introduce our first attempts at next generation human computer interaction: Gmail Motion. Gmail Motion allows you to control Gmail — composing and replying to messages — using your body.
To use Gmail Motion, you’ll need a computer with a built-in webcam. Once you enable Gmail Motion from the Settings page, Gmail will enable your webcam when you sign in and automatically recognize any one of the detected movements via a spatial tracking algorithm. We designed the movements to be easy and intuitive to perform and consulted with top experts in kinestetics and body movement in devising them.
We’ve been testing Gmail Motion with Googlers over the last few months and have been really excited about the feedback we’ve been hearing. We’ve also done some internal tests to measure productivity improvements and found an average 14% increase in email composition speed and12% reduction in average time in inbox. With Gmail Motion, Googlers were able to get more done and get in and out of their inboxes more quickly.
To use Gmail Motion, you’ll need the latest version of Google Chrome or Firefox 3.5+ and a built-in webcam. If it’s not already enabled on your account, sit tight — we’ll be making it available to everyone over the next day or so.”
What is not so foolish? You mean, can this not be done? Well here is some development. Inspired by the Google blog, hackers at the University of Southern California Institute for Creative Technologies wanted to make it a reality! Towards this, a group of developers took Microsoft Kinect sensor and some software they had done for previous projects; and tied them together to create a fully working prototype of Google Motion! This was their response to the Google blog:
“This morning, Google introduced Gmail Motion, allowing users to control Gmail using gestures and body movement. However, for whatever reason, their application doesn’t appear to work. So, we demonstrate our solution — the Software Library Optimizing Obligatory Waving (SLOOW) — and show how it can be used with a Microsoft Kinect sensor to control Gmail using the gestures described by Google.”
While this whole episode was funny (or foolish), what it brings out are the technological advances in sensors and image processing – that what we think is fantasy can become real in no time. So, the bar for being creative has been raised significantly, for it to remain a fantasy for a while, otherwise folks watch out, technology will catch up in no time!
Sunday, April 10, 2011
Days of "Altruism"
Last week India was upbeat with Anna Hazare’s social cause. It can be be classically defined as truly altruistic endeavour. But, was it altruism? What is altruism? In a pure sense, it is the selfless concern for welfare of others. It is a traditional virtue in many cultures. There is no expectation of reward. Is pure altruism possible, though? Social evolution is a discipline that is concerned with social behaviours, i.e. that have fitness consequences for individuals other than the actor, does classify altruism as one of the accepted social behaviours. Social behaviours have been categorized by W D Hamilton in 1960s as follows:
- Mutually beneficial - a behavior that increases the direct fitness of both the actor and the recipient
- Selfish - a behavior that increases the direct fitness of the actor, but the recipient suffers a loss
- Altruistic - a behavior that increases the direct fitness of the recipient, but the actor suffers a loss
- Spiteful - a behavior that decreases the direct fitness of both the actor and the recipient
Hamilton proposed the above classification saying that Darwin’s natural selection favoured mutually beneficial or selfish behaviours while kin selection could explain altruism and spite. The closed we come to understanding altruism scientifically is by understanding biological altruism. In evolutionary biology, an organism is said to behave altruistically when its behaviour benefits other organisms, at a cost to itself. The costs and benefits are measured in terms of reproductive fitness, or expected number of offspring. So by behaving altruistically, an organism reduces the number of offspring it is likely to produce itself, but boosts the number that other organisms are likely to produce. This biological notion of altruism is not identical to the everyday concept. In everyday parlance, an action would only be called ‘altruistic’ if it was done with the conscious intention of helping another. But in the biological sense there is no such requirement. Indeed, some of the most interesting examples of biological altruism are found among creatures that are (presumably) not capable of conscious thought at all, e.g. insects. For the biologist, it is the consequences of an action for reproductive fitness that determine whether the action counts as altruistic, not the intentions, if any, with which the action is performed.
For decades, selflessness - as exhibited in eusocial (true social) insect colonies where workers sacrifice themselves for the greater good – has been explained in terms of genetic relatedness. Called kin selection, it was a neat solution to the conundrum of selflessness. The dominant evolutionary theory and its influence on human altruism are now under attack.
On the face of it, self-serving humans are nothing like paper wasps, which along with their relatives, ants, bees and termites, are defined as eusocial, creatures that display the highest levels of social organization. Famed Harvard biologist and author Edward O. Wilson, who gave eusociality its first clear meaning, refers to such behaviour as “civilization by instinct”.
The evolutionary theories , in particular kin selection, go a long way towards reconciling the existence of altruism in nature with Darwinian principles. However, some people have felt these theories in a way devalue altruism, and that the behaviours they explain are not ‘really’ altruistic. The grounds for this view are easy to see. Ordinarily we think of altruistic actions as disinterested, done with the interests of the recipient, rather than our own interests, in mind. But kin selection theory explains altruistic behaviour as a clever strategy devised by selfish genes as a way of increasing their representation in the gene-pool, at the expense of other genes. Surely this means that the behaviours in question are only ‘apparently’ altruistic, for they are ultimately the result of genic self-interest? Reciprocal altruism theory also seems to ‘take the altruism out of altruism’. Behaving nicely to someone in order to procure return benefits from them in the future seems in a way the antithesis of ‘real’ altruism — it is just delayed self-interest.
To some extent, the idea that kin-directed altruism is not ‘real’ altruism has been fostered by the use of the ‘selfish gene’ terminology of Dawkins (1976). As we have seen, the gene's-eye perspective is heuristically useful for understanding the evolution of altruistic behaviours, especially those that evolve by kin selection. But talking about ‘selfish’ genes trying to increase their representation in the gene-pool is of course just a metaphor (as Dawkins fully admits); there is no literal sense in which genes ‘try’ to do anything. Any evolutionary explanation of how a phenotypic trait evolves must ultimately show that the trait leads to an increase in frequency of the genes that code for it (presuming the trait is transmitted genetically.) Therefore, a ‘selfish gene’ story can by definition be told about any trait, including a behavioural trait, that evolves by Darwinian natural selection. To say that kin selection interprets altruistic behaviour as a strategy designed by ‘selfish’ genes to aid their propagation is not wrong; but it is just another way of saying that a Darwinian explanation for the evolution of altruism has been found. As Sober and Wilson (1998) note, if one insists on saying that behaviours which evolve by kin selection / donor-recipient correlation are ‘really selfish’, one ends up reserving the word ‘altruistic’ for behaviours which cannot evolve by natural selection at all.
For the past four decades kin selection theory has been the major theoretical attempt to explain the evolution of eusociality,” writes Wilson and Harvard theoretical biologists Martin Nowak and Corina Tarnita in an Aug. 25 Nature 2010 paper. “Here we show the limitations of its approach.”
According to the standard metric of reproductive fitness, insects that altruistically contribute to their community’s welfare but don’t themselves reproduce score a zero. They shouldn’t exist, except as aberrations — but they’re common, and their colonies are fabulously successful. Just 2 percent of insects are eusocial, but they account for two-thirds of all insect biomass.
Kin selection made sense of this by targeting evolution at shared genes, and portraying individuals and groups as mere vessels for those genes. Before long, kin selection was a cornerstone of evolutionary biology. It was invoked to help explain social and cooperative behavior across the animal kingdom, even in humans.
But according to Wilson, Nowak and Tarnita, the great limitation of kin selection is that it simply doesn’t fit the data. Wilson et al claim that looking at a worker ant and asking why it is altruistic is the wrong level of analysis. The important unit is the colony.
Their new theory of eusocialty may be useful in understanding, for example, how single-celled organisms gave rise to multi-celled organisms. Human selflessness and cooperation, involves interation of culture and sentience, not just genes and genetics. As claimed in the paper, ‘there are certain things we can learn from ants. Its easier to think about ants, but people are complicated’.
I am not proposing any scientific evidence for human altruism, indeed if it exists. Most definitely not for the last week’s event that drew me to read more about it. Was it pure altruism, or apparent altruism? Or kin selection? Or plain selfishness?
Sunday, March 27, 2011
Crowd behaviour
Last week, one of my friends pointed out to me that my many recent blog articles have been only on the energy efficiency topic and are not as unpredictable and/or interesting as the earlier ones. So this time am making a conscious attempt at not writing about energy. There is lot of construction activity in Bangalore and the place where I live in. The construction is not just restricted to residences but increased number of residences puts pressure on municipal corporation to provide more water and handle sewage. The road outside where we live, has been dug to lay in water and all kinds of pipes. That means our only road that gets us out of layout is closed and as is common place – a new temporary road has been found out. That road can not handle the pressures of the traffic. I was thinking about this scenario and it gave me an idea of today’s topic. Is there a deterministic (non-random) way of assessing the crowd traffic and its impact on better understanding of crowd behaviour, improved design of the built infrastructure? Crowd is being used in a generic sense and although it is about a group of people, here it is being used in a more generic sense as you would find anywhere in India – in that it is a collection of group of people, herd of cows and goats, a group of auto rickshaws, a grop of water tankers in summer and in general a group of vehicles that move in all possible directions even though the road may be straight ! If you leave in time, what is the probability in a scientific way of reaching your destination in a fixed time? Does crowd monitoring help? Let us explore.
Although crowds are made up of independent individuals or entities (remember not to leave aside the cows and buffalos and even vehicles that are driven by individuals) , each with their own objectives, intelligence and behaviour patterns, the behaviour of crowds is widely understood to have collective characterisitics which can be described in general terms. Since the Roman times, the mob rule or mob mentality is an implication of a crowd that is something other than the sum of its individual parts and that it possesses behaviour patterns which differ from the behaviour expected individually from its participants. If there is any scientific basis for the study of crowd behaviour, it must belong to the realm of social sciences and psychology, and that the mere mortals of physical sciences and engineering have limited or no business in getting involved with such studies. But I came across an article a few years ago that was interesting. It said understanding of field theory and flow dynamics is good enough to get started on getting a solution to crowd monitoring and may offer solutions that are technology based and control the crowd behaviour using developments in image processing and image understanding.
The article I mentioned above was one of IEE publications. Do not recall which one. But the thought process left an impression. It said our knowledge of study of gases can provide us insgihts into the study of understanding crowd behaviour. After all, a gas is made up of individual molecules, moving about more-or-less independently of each other, with differing velocities and directions. The ideal-gas theory provides a reasonably accurate basis of predicting the properties and behaviour of gases over a wide range of conditions, without considering behaviour of individual molecules. This was a major breakthrough and something not possible to conceive if the notion had prevailed that equations of motion for each individual molecule had to be solved in order to predict overall behaviour of a gas in any particular direction. What it also proved was an observation in mob rule, that the overall behaviour is something other than the sum total of its parts.
Now where does this similarity end? Surely the molecules of gas are different from cows and buffaloes and individuals and vehicles. They are far more complex and have a mind of their own. The theory of gases does not attribute intelligence to molecules. The possessed crowd that moves in a particular direction in a mindless pursuit is akin to the behaviour of charged particles under the influence of electric field. When you have a temporary road that is bi-directional, you not only have a crowd moving in one direction but in both and capable of inducing collisions, like particles of opposite charges.
I have known many techniques in recent years in image processing that use those well-established techniques for monitoring and collection of data on crowd behaviour. A key factor in the solutions is the use of techniques where inferences can be drawn by rising above individual pixels or objects – a notion akin to rising above molecules and individuals that make up the spaces.
Whether all of this can lead me to predict fixed time of arrival at destination is anybody’s guess. But it does provide insights into crowd behaviour and probably an interesting application of science that can make your journey to the destination enjoyable.
Sunday, March 6, 2011
The Green Rebound
What is a rebound effect? In traditional sense, it is used in medicine to describe an effect where it shows the tendency of medication, when discontinued, causes a return of symptoms being treated to be more pronounced than before. So what has ‘green’ got to do with the rebound effect? Well, couple of weeks ago, there was an article in Nature News that has rekindled interest in this topic; which has been a point of discussion for many days now, I must confess. The green rebound, as I call it, is the rebound effect as applied to energy conservation. I have been emphasizing through many articles before on the need to be energy-prudent, to be energy conscious and hence do things which conserve energy. But just what happens when you save?
What is not debated is whether the effect exists. You may be surprised to know it does. What is being debated is the extent of this rebound? Like all other economic models, this one too is tending to overstate the reality.
1. The actual resource savings are higher than expected – the rebound effect is negative. This is unusual, and can only occur in certain specific situations (e.g. if the government mandates the use of more resource efficient technologies that are also more costly to use).
2. The actual savings are less than expected savings – the rebound effect is between 0% and 100%. This is sometimes known as 'take-back', and is the most common result of empirical studies on individual markets.
3. The actual resource savings are negative – the rebound effect is higher than 100%. This situation is commonly known as the Jevons paradox, and is sometimes referred to as 'back-fire'.
The rebound effect is a phenomenon based on economic theory and long-term historical studies, but as with all economic observations its magnitude is a matter of considerable dispute. Its significance for energy olicy has increased over the last two decades, with the claim by energy analysts in the 1970s, and later by environmentalists in the late 1980s, that increasing energy efficiency would lead to reduced national energy consumption, and hence lower green gas emissions. Whether this claim is feasible depends crucially on the extent of the rebound effect: if it is small (less than 100%) then energy efficiency improvements will lead to lower energy consumption, if it is large (greater than 100%) then energy consumption will be higher. Note the use of the relative terms ‘lower’ and ‘higher’: what exactly they are relative to has often been left unstated and has been a cause of much confusion in energy policy debates. Sometimes it refers to current energy consumption, at other times to a reduction in the future rate of growth in energy onsumption.
1. Technological improvements in energy efficiency enable economic growth that was otherwise impossible without the improvement; as such, energy efficiency improvements will usually back-fire in the long term.
2. Technological improvements in energy efficiency may result in a small take-back. However, even in the long term, energy efficiency improvements usually result in large overall energy savings.
Should there be an alarm due to such reports that you may across? Well no. Every coin has two sides and if anyone assumes that this report makes a non-case of energy efficiency, that is far-fetched. It only means that as we start conserving, we need to be more careful in terms of usage and hence I believe monitoring of your energy resources not just once in a while, but on a continuous basis will ensure the rebound does not take place. So monitoring is like that medicine, which once withdrawn, can have rebound effect.